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Black-box optimization

Consider the problem of finding a maximizer of a function
f: X >R

Assumptions:

» f is not known explicitly; can only be accessed through
evaluation queries.

» The observations of f are noisy.

» The function f is expensive to evaluate.

Goal: Design a sequential strategy of selecting query points to
quickly reach a global optimizer of f.



Regularity assumptions on f

» We want to get close to the global optimizer z* from finite
number (n) of observations.

> Informally we require that:

» Evaluating f at some z € X" gives some information about f
in its neighbourhood.

» Finitely many such neighborhoods cover whole of X.

» Two common ways of imposing these conditions:

1. Lipschitz Optimization: Explicit smoothness assumptions on f
2. Bayesian Framework: f is a sample from a stochastic process



Problem Setting

v

Suppose f: X — R is a sample from GP(0, K).

v

Observation model: y = f(x) +n with n ~ N(0,02).

» X is a compact subset of RP

v

Budget = n evaluations

v

Select queries { X1, Xo, ..., X, } sequentially

Performance measures:
» Simple regret: S, = f(z*) — f(z})

n

v

» Cumulative regret: R, = >, f(z*) — f(z¢)



Example-1: Hyperparameter tuning in ML models

v

Suppose the learning algorithm with hyperparameters 6
outputs classifier A(0)

» X'= space of hyperparameters.
» f(0)= performance of A(f) on test dataset.

» Constraint: finite computational resources = n-attempts.

v

Goal:After n rounds, Output 6 : our best guess

v

Performance metric: Simple Regret

Sn = f(07) = f(6n)

v

Pure exploration problem.



Example-2: Clinical Trials

v

X ={t1,ta,...,t;,} = set of all possible treatments.

v

f = response of patients to a particular treatment.
» n = number of patients available for trial.

» Goal: Find the best strategy of assigning treatments while
minimizing harm to patients.

v

Performance metric: Cumulative Regret

Rn = Z;f(t*) — f(t:)

v

Presents an exploration-exploitation dilemma.



Bayesian Optimization (BO)

» Gaussian Process (GP) most commonly used prior:

» can model a large class of functions?
» analytically and computationally tractable

» Usual BO algorithms have two steps:

1. obtain the posterior on f based on prior and observations.
2. Query point selection rule:

xy = argmax ¢ ()
TeEX
where ¢.(x) represents the utility of .

» examples UCB, El, PI, Thompson Sampling

» Require maximization of ¢; over the continuous space X.

'Micchelli et al. (2006). Universal kernels. JMLR



GP Confidence Intervals

UCB algorithm: z; € arg max,c y U(z)




Lipschitz Optimization

>

Algorithms adaptively partition the search space X.

Idea: can discard regions based on observations.
Example: Suppose f : [0,1] — R is 1-Lipschitz.
> Let £(0.2) € [1,1.1] and £(0.8) € [0.4,0.5]

» Then z* & (0.3,1]

At any time t algorithms divide X" into O(t) regions.
» query points selected from O(t) representative points.

» no global maximization over continuous space X required.

Algorithms such as zooming algorithm?, and various tree
based methods?

Drawback: Lipschitz asumption too strict.

*Kleinberg et al.(2013)
*Munos (2014)



BO with adaptive discretization

Question: Can we combine
1. the representation power of GPs
2. and the computational simplicity of Lipschitz optimization

Answer: Yes.

> We present two algorithms:

» A Bayesian version of the zooming algorithm
» A Bayesian tree based algorithm.

» We use techniques from the study of suprema of GPs to
design the algorithms.

» BaMSOO* only other algorithm which attempts this in a
much restricted setting.
*Wang et al. (2014)




Some notations

v

GP(0,K) induces a metric on X', denoted by
d: X xX —[0,00)

d(xl,l’g) = [K(a:l,arl) + K($27x2) — 2K(.CC1, .CCQ)]l/Q

v

l($1,$2) = ||l’1 — $2H

» Covariance function K satisfies two assumptions:
» Al: Vz,y € X: d(x,y) < g(||lz —vy|) , for g : RT — R*
non-decreasing

» A2: 309, Ck,a >0, such that g(r) < Cgr® Vr <.

v

K ={K : K satisfies Al and A2}.



Algorithm-1: Bayesian Zooming algorithm

» The algorithm maintains a set A; of points that have been
evaluated at least once.

» Based on posterior mean and variance, construct L;(x), Uy (z)
for all x € A;.

» If ny(x) = k, then we can show that oy(z) < o/Vk
» To each x € Ay, such that ny(z) = k, we assign a radius ry,

» For each (x,r) pair we have a bound W (ry) on the variation
of fin B(x,r).

» New evaluation points are selected optimistically



Bayesian Zooming algorithm

Algorithm 1: Bayesian Zooming Algorithm

Input :n >0, (re)r>0. (W(rk))k>0

1 while t < n do
choose z; = argmax,¢ 4, Ur(x) + W (rp,(2))
evaluate yr = f(xy) +m
update posterior u:(z) and oy(x)
update ngy1(x¢) < ng(ag) + 1
update ry11(z)
if ¥¢ UziEAtB(xia TtJrl(xi)) then
Add a point x € X'\ Ug,ea,B(xi, re41(x;)) to Ag, with
ri(x) = rg = diam(X).

O N O s W N

9 end
10 end




Regret Bounds for zooming algorithm

With high probability, the cumulative regret incurred by
Algorithm- 1 is upper bounded by

Ry < On' 7i) (1)

Here D is a notion of dimension of the near optimal regions
of fand D < D ass.

QOutline:

> if ng(z) > k, then f(z*) — f(z) < O(1/VE)
> if ng(x),ne(y) <k, then I(z,y) > 7

» Suboptimal points are widely spaced = bound them with
their packing numbers.



Comparison with existing bounds

v

Existing bounds on R,, have the general form:

Ry < O(v/nyplogn) (2)

» Here ~y,, is the maximum information gain from n observations

Y= sup I(ys; [) (3)
SCX:|S|=n

v

To get explict nontrivial bounds, we need sublinear bounds on
vy, for specific kernels.

> 7v,: maximum information about f, and not necessarily x*.



A toy example

Suppose X = [0, 1] and let f: [0,1] — R be a sample from:

fl@) = aiXi(p(3'z — 1) — p(3'z — 2))
=1

() =1—4(x —0.5)°




Improved bounds for Matérn kernels

> Matérn kernels are a widely used in ML. Parameterized by
v=m+1/2.

K(r) = K(0)(1 + pp(r))e V"
» Our bounds improve on the existing bounds in two ways:

» For v = 1/2, we provide the first explicit sublinear bounds on
cumulative regret.

» For all other v, our bounds are tighter when D > v — 1.

» Most commonly used in ML are v = 3/2 and v = 5/2.



Algorithm-2: Tree based algorithm

» The zooming algorithm requires a covering oracle to check
whether :

X ¢ Ugen, B(xi,reg1(zi))

holds, and if not return any point from the uncovered region.
» Can be difficult to implement for arbitrary metric spaces.
» Alternative: work with a fixed sequence (or tree) of partitions:

> Finite subsets (X},)n>0, where X, = {z),; : 1 <i < 2h}
» for each xp ;, we have a cell

X ={ze X :l(z,zn,) <lz,zp;) VjF#i}

Ay for a fixed h, partition X'



Regret bounds for Tree based algorithm

Suppose the tree of partitions has cells of geometrically de-
caying diameters (in the metric [). Then we have w.h.p.

Sp = f(z7) —f(rc( )) O(n =/ (D422 (4)
Rn =Y fa* < O(n'” D) (5)

t<n

Outline:
> if z,; is evaluated, then f(z*) — f(zh,i) < 4Vh—y

> points at level A in the tree are separated by some py,.

» number of such points can be bounded by packing numbers.



Comparison with BaMSOO

» Another algorithm which works on a tree of partitions is
Bayesian Multi-Scale Optimistic Optimization (BaMSOO)

» Evaluates points at all levels h of the current tree.

» Bound on S, of the form O(n=¢P) for some ¢ > 0.

Our method has some advantages:

» BaMSOO requires extra assumptions for regret guarantees:
doesn't hold for K (z1,z2) = c1 exp(—ca||lx1 — x2||).

» BaMSOO only works with noiseless observations.

» Sy, for BaMSOO is always O(n=/P). For our algorithm for
some GP, S, = O(e~¢").



Summary of Results

» We present two algorithms for Bayesian Optimization, based
on ideas from Lipschitz optimization.

» We derive some bounds on the variation of GP samples in
d-balls to facilitate the choice of parameters.

» We obtain bounds on cumulative regret in terms of
near-optimality dimension:
> tighten the bounds for Matérn kernels.
» first explicit sub-linear bounds for exponential kernels.
» construct a toy-example showing when ~,, based bounds are
loose

» Obtain bounds on Simple Regret for second algorithm:
» Some improvements over BaMSOO



BACKUP SLIDES



Regret bounds for zooming algorithm

With high probability, the following are true:

» If a point x; is chosen to be evaluated at time ¢, then we have

for A(xy) = f(x*) — f(x)

A < 0 2L ) (6)

nt(a:t)

> If two points = and y have been evaluated no more than k&
times each must be separated by a distance of r

» Let p < h < p'l, and for A; = (ﬁ%), we define
X, ={z € X : A(x) < A;}. Contribution of the points
evaluated h times for h € [p?, p'™!] to the cumulative regret:

By
/2

R < p"“( )M(XAi,rpi,Z) (7)



Extension to agnostic setting

» Assumption: f is an arbitrary function in the RKHS® of the
kernel K with a knonwn bound (B) on the RKHS norm.

» By reproducing property, Cauchy-Schwarz inequality and
assumptions on kernel K:

[f(21) = fa2)| = [(f, K (21, ) = (f, K(22,-))| < Bd(x1,22)
< By(|lz1 — z2f)

» We can apply the zooming algorithm here, to get a similar
regret bound as Eq.(1)

» For Matérn kernels, our bounds are sublinear for all values of
v and D. Existing bounds are sublinear only if v > D(D + 1).

®Reproducing Kernel Hilbert Space



Algorithm-2: Tree based algorithm

> Assume that the cells A}, ; satisfy:
> Xhi C B(xn,, Ry)
> B(hi,mh) C X

> Select points optimistically from current leaf set £;. Initially
Lo = {z1}= root node

» After selecting point xy, ;,, one of two actions:
» Evaluate: If ny(xp, ) < Kp,, evaluate f at xp, .

» Expand: If ny(zp, i,) = Kp,, expand node (hy, ).



Tree based algorithm

Algorithm 2: Tree based Algorithm for Bayesian Optimization

Input :n >0, (X)n>0, (Vi)r>0, (Kn)n>0, Lo = {z0,1}

1 fort=1tondo
2 choose zp, ;, = argmax,, ¢, I1(Tn;) =
pt—1(h,i) + Bno—1(zn:) + Vi

3 if ni(zp,:,) < Kp, then
4 Yt = [(Tn, ) + e
5 nt+1(xht,it> = nt(xhtait) +1
6 update posterior p(x) and oy (x)
7 else

8 Lip1 = Le\ {(he,ie)}
0 Lopr = Lo U{(he + 1,2 — 1), (he + 1,2i)}
10 end

11 end
Output: z(n): the deepest expanded node




Regret analysis of Tree based algorithm

With high probability, the following statements are true:
» If a point x3; is expanded by the algorithm, then we must
have f(zp;) + 3Vy > f(2*) which means that
fzni) > f(z*) — 3V},

> If a point zp,; € £y and p(wp;) = Tp_1,|(i+1)/2), then it must
satisfy f(zn,i) > f(p(@ni)) — Va1 = f(2*) — 4Vh1.

» Thus, at level h the algorithm only selects points from the set
Ih = {.%' S Xh : f(.’L‘h) > f(a:*) — 4Vh,1}



Regret analysis of Tree based algorithm

Suppose we select the points according to Algorithm-1. Let us
define H(n) in the following way:

H
H(n) = max{H : Y Ky|Z| < n}
h>0

Then the point recommended by the algorithm, the simple regret
for recommending x(n) will satisfy the following w.h.p.

Sn = f(2") = f(z(n)) < 3Vi() (8)

Moreover, for any H > 0, we have the following high probability
bound on cumulative regret:

Rn =Y fla*) = flzy) < ZKhthth L +4AnVyg o (9)
t<n h=0
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