
Bayesian Optimization with adaptive discretization

Introduction
Background
Problem Formulation

Main Results
Algorithm-1: Bayesian Zooming Algorithm

Regret Analysis

Algorithm-2: Tree based algorithm
Regret Analysis

Summary of Results

Black-box optimization

Consider the problem of finding a maximizer of a function
f : X → R.

Assumptions:

I f is not known explicitly; can only be accessed through
evaluation queries.

I The observations of f are noisy.

I The function f is expensive to evaluate.

Goal: Design a sequential strategy of selecting query points to
quickly reach a global optimizer of f .

Regularity assumptions on f

I We want to get close to the global optimizer x∗ from finite
number (n) of observations.

I Informally we require that:
I Evaluating f at some x ∈ X gives some information about f

in its neighbourhood.

I Finitely many such neighborhoods cover whole of X .

I Two common ways of imposing these conditions:

1. Lipschitz Optimization: Explicit smoothness assumptions on f
2. Bayesian Framework: f is a sample from a stochastic process

Problem Setting

I Suppose f : X → R is a sample from GP (0,K).

I Observation model: y = f(x) + η with η ∼ N(0, σ2).

I X is a compact subset of RD

I Budget = n evaluations

I Select queries {X1, X2, . . . , Xn} sequentially

I Performance measures:
I Simple regret: Sn = f(x∗)− f(x∗n)

I Cumulative regret: Rn =
∑n
t=1 f(x∗)− f(xt)

Example-1: Hyperparameter tuning in ML models

I Suppose the learning algorithm with hyperparameters θ
outputs classifier A(θ)

I X= space of hyperparameters.

I f(θ)= performance of A(θ) on test dataset.

I Constraint: finite computational resources ⇒ n-attempts.

I Goal:After n rounds, Output θ∗n: our best guess

I Performance metric: Simple Regret

Sn = f(θ∗)− f(θ∗n)

I Pure exploration problem.

Example-2: Clinical Trials

I X = {t1, t2, . . . , tm} = set of all possible treatments.

I f = response of patients to a particular treatment.

I n = number of patients available for trial.

I Goal: Find the best strategy of assigning treatments while
minimizing harm to patients.

I Performance metric: Cumulative Regret

Rn =

n∑
i=1

f(t∗)− f(ti)

I Presents an exploration-exploitation dilemma.

Bayesian Optimization (BO)

I Gaussian Process (GP) most commonly used prior:
I can model a large class of functions1

I analytically and computationally tractable

I Usual BO algorithms have two steps:

1. obtain the posterior on f based on prior and observations.
2. Query point selection rule:

xt = arg max
x∈X

φt(x)

where φt(x) represents the utility of x.

I examples UCB, EI, PI, Thompson Sampling

I Require maximization of φt over the continuous space X .

1Micchelli et al. (2006). Universal kernels. JMLR

GP Confidence Intervals

UCB algorithm: xt ∈ arg maxx∈X Ut(x)

U_t(x)

Lipschitz Optimization

I Algorithms adaptively partition the search space X .

I Idea: can discard regions based on observations.
Example: Suppose f : [0, 1]→ R is 1-Lipschitz.

I Let f(0.2) ∈ [1, 1.1] and f(0.8) ∈ [0.4, 0.5]
I Then x∗ 6∈ (0.3, 1]

I At any time t algorithms divide X into O(t) regions.
I query points selected from O(t) representative points.
I no global maximization over continuous space X required.

I Algorithms such as zooming algorithm2, and various tree
based methods3

I Drawback: Lipschitz asumption too strict.

2Kleinberg et al.(2013)
3Munos (2014)

BO with adaptive discretization

Question: Can we combine

1. the representation power of GPs
2. and the computational simplicity of Lipschitz optimization

Answer: Yes.

I We present two algorithms:
I A Bayesian version of the zooming algorithm
I A Bayesian tree based algorithm.

I We use techniques from the study of suprema of GP s to
design the algorithms.

I BaMSOO4 only other algorithm which attempts this in a
much restricted setting.

4Wang et al. (2014)

Some notations

I GP (0,K) induces a metric on X , denoted by
d : X × X → [0,∞)

d(x1, x2) = [K(x1, x1) +K(x2, x2)− 2K(x1, x2)]1/2

I l(x1, x2) = ‖x1 − x2‖.

I Covariance function K satisfies two assumptions:
I A1: ∀x, y ∈ X : d(x, y) ≤ g(‖x− y‖) , for g : R+ → R+

non-decreasing

I A2: ∃δ0, CK , α > 0, such that g(r) ≤ CKrα ∀r ≤ δ0.

I K = {K : K satisfies A1 and A2}.

Algorithm-1: Bayesian Zooming algorithm

I The algorithm maintains a set At of points that have been
evaluated at least once.

I Based on posterior mean and variance, construct Lt(x), Ut(x)
for all x ∈ At.

I If nt(x) = k, then we can show that σt(x) ≤ σ/
√
k

I To each x ∈ At, such that nt(x) = k, we assign a radius rk

I For each (x, rk) pair we have a bound W (rk) on the variation
of f in B(x, rk).

I New evaluation points are selected optimistically

Bayesian Zooming algorithm

Algorithm 1: Bayesian Zooming Algorithm

Input : n > 0, (rk)k≥0, (W (rk))k≥0

1 while t ≤ n do
2 choose xt = arg maxx∈At Ut(x) +W (rnt(x))

3 evaluate yt = f(xt) + ηt
4 update posterior µt(x) and σt(x)
5 update nt+1(xt)← nt(xt) + 1
6 update rt+1(x)
7 if X 6⊂ ∪xi∈AtB(xi, rt+1(xi)) then
8 Add a point x ∈ X \ ∪xi∈AtB(xi, rt+1(xi)) to At, with

rt(x) = r0 = diam(X).
9 end

10 end

Regret Bounds for zooming algorithm

Theorem-1

With high probability, the cumulative regret incurred by
Algorithm- 1 is upper bounded by

Rn ≤ Õ
(
n

1− α
D̃+2α

)
(1)

Here D̃ is a notion of dimension of the near optimal regions
of f and D̃ ≤ D a.s.

Outline:

I if nt(x) ≥ k, then f(x∗)− f(x) ≤ Õ(1/
√
k)

I if nt(x), nt(y) ≤ k, then l(x, y) ≥ rk

I Suboptimal points are widely spaced ⇒ bound them with
their packing numbers.

Comparison with existing bounds

I Existing bounds on Rn have the general form:

Rn ≤ O(
√
nγn log n) (2)

I Here γn is the maximum information gain from n observations

γn = sup
S⊂X :|S|=n

I(yS ; f) (3)

I To get explict nontrivial bounds, we need sublinear bounds on
γn for specific kernels.

I γn: maximum information about f , and not necessarily x∗.

A toy example
Suppose X = [0, 1] and let f : [0, 1]→ R be a sample from:

f(x) =

∞∑
i=1

aiXi

(
ψ(3ix− 1)− ψ(3ix− 2)

)
ψ(x) = 1− 4(x− 0.5)2

Improved bounds for Matérn kernels

I Matérn kernels are a widely used in ML. Parameterized by
ν = m+ 1/2.

K(r) = K(0)(1 + pm(r))e−c1
√
νr

I Our bounds improve on the existing bounds in two ways:
I For ν = 1/2, we provide the first explicit sublinear bounds on

cumulative regret.

I For all other ν, our bounds are tighter when D ≥ ν − 1.

I Most commonly used in ML are ν = 3/2 and ν = 5/2.

Algorithm-2: Tree based algorithm

I The zooming algorithm requires a covering oracle to check
whether :

X 6⊂ ∪xi∈AtB(xi, rt+1(xi))

holds, and if not return any point from the uncovered region.

I Can be difficult to implement for arbitrary metric spaces.

I Alternative: work with a fixed sequence (or tree) of partitions:
I Finite subsets (Xh)h≥0, where Xh = {xh,i : 1 ≤ i ≤ 2h}
I for each xh,i, we have a cell

Xh,i = {x ∈ X : l(x, xh,i) ≤ l(x, xh,j) ∀j 6= i}

Xh,i for a fixed h, partition X .

Regret bounds for Tree based algorithm

Theorem-2

Suppose the tree of partitions has cells of geometrically de-
caying diameters (in the metric l). Then we have w.h.p.

Sn = f(x∗)− f(x(n)) ≤ Õ(n−α/(D̃+2α)) (4)

Rn =
∑
t≤n

f(x∗)− f(xt) ≤ Õ(n
1− α

D̃+2α) (5)

Outline:

I if xh,i is evaluated, then f(x∗)− f(xh,i) ≤ 4Vh−1

I points at level h in the tree are separated by some ρh.

I number of such points can be bounded by packing numbers.

Comparison with BaMSOO

I Another algorithm which works on a tree of partitions is
Bayesian Multi-Scale Optimistic Optimization (BaMSOO)

I Evaluates points at all levels h of the current tree.

I Bound on Sn of the form Õ(n−c/D) for some c > 0.

Our method has some advantages:

I BaMSOO requires extra assumptions for regret guarantees:
doesn’t hold for K(x1, x2) = c1 exp(−c2‖x1 − x2‖).

I BaMSOO only works with noiseless observations.

I Sn for BaMSOO is always Õ(n−c/D). For our algorithm for
some GP, Sn = Õ(e−c

′n).

Summary of Results

I We present two algorithms for Bayesian Optimization, based
on ideas from Lipschitz optimization.

I We derive some bounds on the variation of GP samples in
d-balls to facilitate the choice of parameters.

I We obtain bounds on cumulative regret in terms of
near-optimality dimension:

I tighten the bounds for Matérn kernels.
I first explicit sub-linear bounds for exponential kernels.
I construct a toy-example showing when γn based bounds are

loose

I Obtain bounds on Simple Regret for second algorithm:
I Some improvements over BaMSOO

BACKUP SLIDES

Regret bounds for zooming algorithm

With high probability, the following are true:

I If a point xt is chosen to be evaluated at time t, then we have
for ∆(xt) = f(x∗)− f(xt)

∆(xt) ≤ O
(√

log n√
nt(xt)

)
(6)

I If two points x and y have been evaluated no more than k
times each must be separated by a distance of rk

I Let ρi ≤ h < ρi+1, and for ∆i = (B
′
n

ρi/2
), we define

X∆i = {x ∈ X : ∆(x) ≤ ∆i}. Contribution of the points
evaluated h times for h ∈ [ρi, ρi+1] to the cumulative regret:

R̄i ≤ ρi+1

(
B′n
ρi/2

)
M(X∆i , rρi , l) (7)

Extension to agnostic setting

I Assumption: f is an arbitrary function in the RKHS5 of the
kernel K with a knonwn bound (B) on the RKHS norm.

I By reproducing property, Cauchy-Schwarz inequality and
assumptions on kernel K:

|f(x1)− f(x2)| = |〈f,K(x1, ·)〉 − 〈f,K(x2, ·)〉| ≤ Bd(x1, x2)

≤ Bg(‖x1 − x2‖)

I We can apply the zooming algorithm here, to get a similar
regret bound as Eq.(1)

I For Matérn kernels, our bounds are sublinear for all values of
ν and D. Existing bounds are sublinear only if ν > D(D + 1).

5Reproducing Kernel Hilbert Space

Algorithm-2: Tree based algorithm

I Assume that the cells Xh,i satisfy:
I Xh,i ⊂ B(xh,i, Rh)
I B(xh,i, rh) ⊂ Xh,i

I Select points optimistically from current leaf set Lt. Initially
L0 = {x01}= root node

I After selecting point xht,it , one of two actions:
I Evaluate: If nt(xht,it) < Kht , evaluate f at xht,it .

I Expand: If nt(xht,it) = Kht , expand node (ht, it).

Tree based algorithm

Algorithm 2: Tree based Algorithm for Bayesian Optimization

Input : n > 0, (Xh)h≥0, (Vh)h≥0, (Kh)h≥0, L0 = {x0,1}
1 for t = 1 to n do
2 choose xht,it = arg maxxi∈Lt It(xh,i) =

µt−1(xh,i) +Bnσt−1(xh,i) + Vh
3 if nt(xht,it) < Kht then
4 yt = f(xht,it) + ηt
5 nt+1(xht,it) = nt(xht,it) + 1
6 update posterior µt(x) and σt(x)

7 else
8 Lt+1 = Lt \ {(ht, it)}
9 Lt+1 = Lt+1 ∪ {(ht + 1, 2it − 1), (ht + 1, 2it)}

10 end

11 end
Output: x(n): the deepest expanded node

Regret analysis of Tree based algorithm

With high probability, the following statements are true:

I If a point xh,i is expanded by the algorithm, then we must
have f(xh,i) + 3Vh ≥ f(x∗) which means that
f(xh,i) ≥ f(x∗)− 3Vh.

I If a point xh,i ∈ Lt and p(xh,i) = xh−1,b(i+1)/2c, then it must
satisfy f(xh,i) ≥ f(p(xh,i))− Vh−1 ≥ f(x∗)− 4Vh−1.

I Thus, at level h the algorithm only selects points from the set
Ih = {x ∈ Xh : f(xh) ≥ f(x∗)− 4Vh−1}

Regret analysis of Tree based algorithm

Suppose we select the points according to Algorithm-1. Let us
define H(n) in the following way:

H(n) = max{H :

H∑
h≥0

Kh|Ih| < n}

Then the point recommended by the algorithm, the simple regret
for recommending x(n) will satisfy the following w.h.p.

Sn = f(x∗)− f(x(n)) ≤ 3VH(n) (8)

Moreover, for any H > 0, we have the following high probability
bound on cumulative regret:

Rn =
∑
t≤n

f(x∗)− f(xt) ≤
H∑
h=0

Kh|Ih|4Vh−1 + 4nVH (9)

	Introduction
	Background
	Problem Formulation

	Main Results
	Algorithm-1: Bayesian Zooming Algorithm
	Algorithm-2: Tree based algorithm

	Summary of Results

